On Pierce-like Idempotents and Hopf Invariants

نویسندگان

  • GIORA DULA
  • PETER HILTON
چکیده

Given a set K with cardinality ‖K‖ = n, a wedge decomposition of a space Y indexed by K, and a cogroup A, the homotopy group G = [A,Y] is shown, by using Pierce-like idempotents, to have a direct sum decomposition indexed by P(K)−{φ} which is strictly functorial if G is abelian. Given a class ρ : X → Y , there is a Hopf invariant HIρ on [A,Y] which extends Hopf’s definition when ρ is a comultiplication. Then HI = HIρ is a functorial sum of HIL over L ⊂ K, ‖L‖ ≥ 2. Each HIL is a functorial composition of four functors, the first depending only on An+1, the second only on d, the third only on ρ, and the fourth only on Yn. There is a connection here with Selick and Walker’s work, and with the Hilton matrix calculus, as described by Bokor (1991).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum Enveloping Algebras with Von Neumann Regular Cartan-like Generators and the Pierce Decomposition

Quantum bialgebras derivable from Uq(sl2) which contain idempotents and von Neumann regular Cartan-like generators are introduced and investigated. Various types of antipodes (invertible and von Neumann regular) on these bialgebras are constructed, which leads to a Hopf algebra structure and a von Neumann-Hopf algebra structure, respectively. For them, explicit forms of some particular R-matric...

متن کامل

Finitely Generated Invariants of Hopf Algebras on Free Associative Algebras

We show that the invariants of a free associative algebra of finite rank under a linear action of a finite-dimensional Hopf algebra generated by group-like and skew-primitive elements form a finitely generated algebra exactly when the action is scalar. This generalizes an analogous result for group actions by automorphisms obtained by Dicks and Formanek, and Kharchenko.

متن کامل

NOTES ON REGULAR MULTIPLIER HOPF ALGEBRAS

In this paper, we associate canonically a precyclic mod- ule to a regular multiplier Hopf algebra endowed with a group-like projection and a modular pair in involution satisfying certain con- dition

متن کامل

The (1 −E)-transform in combinatorial Hopf algebras

We extend to several combinatorial Hopf algebras the endomorphism of symmetric functions sending the first power-sum to zero and leaving the other ones invariant. As a “transformation of alphabets”, this is the (1 − E)-transform, where E is the “exponential alphabet,” whose elementary symmetric functions are en = 1 n! . In the case of noncommutative symmetric functions, we recover Schocker’s id...

متن کامل

On 3-manifold Invariants Arising from Finite-dimensional Hopf Algebras

We reformulate Kauffman’s method of defining invariants of 3-manifolds intrinsically in terms of right integrals on certain finite dimensional Hopf algebras and define a type of universal invariants of framed tangles and invariants of 3-manifolds.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003